Lesson 22. An Economic Interpretation of LP Duality

1 Overview

- An economic interpretation of duality
- Complementary slackness

2 Warm up

Example 1. The Fulkerson Furniture Company produces desks, tables, and chairs. Each type of furniture requires a certain amount of lumber, finishing, and carpentry:

Resource	Desk	Table	Chair	Available
Lumber (sq ft)	8	6	2	48
Finishing (hrs)	3	2	1	20
Carpentry (hrs)	2	2	1	8
Profit (\$)	60	30	20	

Assume that all furniture produced is sold, and that fractional solutions are acceptable. Write a linear program to determine how much furniture Fulkerson should produce in order to maximize its profits.

$$
\begin{array}{ll}
\text { DVs: } & x_{1}=\# \text { desks to produce } \\
& x_{2}=\# \text { tables to produce } \\
x_{3}=\# \text { chairs to produce } \\
\max & 60 x_{1}+30 x_{2}+20 x_{3} \\
\text { s.t. } & 8 x_{1}+6 x_{2}+2 x_{3} \leq 48 \\
& \text { (total profit) } \\
& \text { (lumber) } \\
2 x_{1}+2 x_{2}+x_{3} \leq 20 & \text { (finishing) } \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{array}
$$

3 Economic interpretation of the dual LP

- Suppose an entrepreneur wants to purchase all of Fulkerson's resources (lumber, finishing, carpentry)
- What prices should she offer for the resources that will entice Fulkerson to sell?
- Define decision variables:

$$
\begin{aligned}
& y_{1}=\text { price of } 1 \text { sq. } \mathrm{ft} \text {. lumber } \\
& y_{2}=\text { price of } 1 \text { hour of finishing } \\
& y_{3}=\text { price of } 1 \text { hour of carpentry }
\end{aligned}
$$

Resource	Desk	Table	Chair	Available
Lumber (sq ft)	8	6	2	48
Finishing (hrs)	3	2	1	20
Carpentry (hrs)	2	2	1	8
Profit (\$)	60	30	20	

- To buy all of Fulkerson's resources, entrepreneur pays:

$$
48 y_{1}+20 y_{2}+8 y_{3}
$$

- Entrepreneur wants to minimize this cost
- Entrepreneur also needs to offer resource prices that will entice Fulkerson to sell
- One desk uses
- 8 sq. ft. of lumber
- 3 hours of finishing
- 2 hours of carpentry
- One desk has profit of $\$ 60$
\Rightarrow Entrepreneur should pay at least $\$ 60$ for this combination of resources:

$$
8 y_{1}+3 y_{2}+2 y_{3} \geqslant 60
$$

- One table uses
- 6 sq. ft. of lumber
- 2 hours of finishing
- 2 hours of carpentry
- One table has profit of $\$ 30$
\Rightarrow Entrepreneur should pay at least $\$ 30$ for this combination of resources:

$$
6 y_{1}+2 y_{2}+2 y_{3} \geqslant 30
$$

- One chair uses
- 2 sq. ft. of lumber
- 1 hours of finishing
- 1 hours of carpentry
- One chair has profit of $\$ 20$
\Rightarrow Entrepreneur should pay at least $\$ 20$ for this combination of resources:

$$
2 y_{1}+y_{2}+y_{3} \geqslant 20
$$

- Increasing the availability of the resources potentially increases the maximum profits Fulkerson can achieve
\Rightarrow Entrepreneur should pay nonnegative amounts for each resource:

$$
y_{1} \geqslant 0, \quad y_{2} \geqslant 0, \quad y_{3} \geqslant 0
$$

- Putting this all together, we get:

$$
\begin{array}{rlr}
\min & 48 y_{1}+20 y_{2}+8 y_{3} & \\
\text { s.t. } & 8 y_{1}+3 y_{2}+2 y_{3} \geq 60 & \left(x_{1}: \text { desks }\right) \\
& 6 y_{1}+2 y_{2}+2 y_{3} \geq 30 & \left(x_{2} \text { tables }\right) \\
& 2 y_{1}+y_{2}+y_{3} \geq 20 & \tag{3}\\
& y_{1}, \quad y_{2}, \quad y_{3} \geq 0 &
\end{array}
$$

- This is the dual of Fulkerson's LP!
- In summary:
- Optimal dual solution \Leftrightarrow "fair" prices for associated resources
- Known as marginal prices or shadow prices
- Strong duality \Rightarrow

$$
\binom{\text { Company's maximum revenue }}{\text { from selling furniture }}=\binom{\text { Entrepreneur's minimum cost }}{\text { of purchasing resources }}
$$

- Equilibrium under perfect competition: company makes no excess profits
- This kind of economic interpretation is trickier for LPs with different types of constraints and variable bounds

4 Complementary slackness

- Optimal solution to Fulkerson's LP: $x_{1}=4, x_{2}=0, x_{3}=0$
- Resources used:

$$
\text { lumber: } 32<48 \quad \text { finishing: } 12<20 \quad \text { carpentry: } 8=8
$$

- How much would you pay for an extra sq. ft. of lumber? $\quad y_{1}=0$
- How much would you pay for an extra hour of finishing?

$$
y_{2}=0
$$

- Resource not fully utilized in optimal solution
\Rightarrow marginal price $=0$
- Primal complementary slackness: either
- a primal constraint is active at a primal optimal solution, or
- the corresponding dual variable at optimality $=0$
- Same logic applies to the dual
- Dual constraints \Leftrightarrow Primal decision variables
- Dual complementary slackness: either
- a primal decision variable at optimality $=0$, or
- the corresponding dual constraint is active in a dual optimal solution

5 More duality practice

Example 2. Consider the following LP:

$$
\begin{array}{llll}
\operatorname{minimize} & 3 x_{1}-x_{2}+8 x_{3} & & \\
\text { subject to } & -x_{1}+8 x_{3} \leq 6 & \text { B } & y_{1} \\
& 5 x_{1}-3 x_{2}+9 x_{3} \geq-2 & \text { S } & y_{2} \\
& x_{1} \geq 0, x_{2} \leq 0, x_{3} \geq 0 & \\
& \text { S B S } & & \\
& \text { S } &
\end{array}
$$

a. Write the dual.
b. Find a feasible solution to the primal and the dual.
c. Give a lower and an upper bound on the optimal value of the above LP.

	\max LP	\leftrightarrow	\min LP	
sensible	\leq constraint	\leftrightarrow	$y_{i} \geq 0$	sensible
odd	$=$ constraint	\leftrightarrow	y_{i} free	odd
bizarre	\geq constraint	\leftrightarrow	$y_{i} \leq 0$	bizarre
sensible	$x_{i} \geq 0$	\leftrightarrow	\geq constraint	sensible
odd	x_{i} free	\leftrightarrow	c constraint	odd
bizarre	$x_{i} \leq 0$	\leftrightarrow	\leq constraint	bizarre

$$
\begin{aligned}
& \text { a. } \max \quad 6 y_{1}-2 y_{2} \\
& \text { set. }-y_{1}+5 y_{2} \leq 3 \text { S } x_{1} \\
& -3 y_{2} \geqslant-1 \quad B \quad x_{2} \\
& 8 y_{1}+9 y_{2} \leqslant 8 \text { s } x_{3} \\
& \begin{array}{c}
y_{1} \leqslant 0, \quad y_{2} \geq 0 \\
B
\end{array} \\
& \text { b. primal: }(0,0,0) \\
& \text { value }=0 \\
& \text { dual: } \quad(0,0)
\end{aligned}
$$

