# Lesson 22. An Economic Interpretation of LP Duality

## 1 Overview

- An economic interpretation of duality
- Complementary slackness

### 2 Warm up

**Example 1.** The Fulkerson Furniture Company produces desks, tables, and chairs. Each type of furniture requires a certain amount of lumber, finishing, and carpentry:

| Resource        | Desk | Table | Chair | Available |
|-----------------|------|-------|-------|-----------|
| Lumber (sq ft)  | 8    | 6     | 2     | 48        |
| Finishing (hrs) | 3    | 2     | 1     | 20        |
| Carpentry (hrs) | 2    | 2     | 1     | 8         |
| Profit (\$)     | 60   | 30    | 20    |           |

Assume that all furniture produced is sold, and that fractional solutions are acceptable. Write a linear program to determine how much furniture Fulkerson should produce in order to maximize its profits.

$$\frac{DV_{s}}{X_{1}} = # desks to produce
X_{2} = # tables to produce
X_{3} = # chairs to produce
max  $60x_{1} + 30x_{2} + 20x_{3}$  (total publit)  
s.t.  $8x_{1} + 6x_{2} + 2x_{3} \leq 48$  (lumber)  
 $3x_{1} + 2x_{2} + x_{3} \leq 20$  (finishing)  
 $2x_{1} + 2x_{2} + x_{3} \leq 8$  (carpentry)  
 $x_{1}, x_{2}, x_{3} \geq 0$$$

#### 3 Economic interpretation of the dual LP

- Suppose an entrepreneur wants to purchase all of Fulkerson's resources (lumber, finishing, carpentry)
- What prices should she offer for the resources that will entice Fulkerson to sell?

• Define decision variables:

| $y_1$ = price of 1 sq. ft. lumber    |   |
|--------------------------------------|---|
| $y_2$ = price of 1 hour of finishing | - |
| $y_3$ = price of 1 hour of carpentry |   |

| Resource        | Desk | Table | Chair | Available |
|-----------------|------|-------|-------|-----------|
| Lumber (sq ft)  | 8    | 6     | 2     | 48        |
| Finishing (hrs) | 3    | 2     | 1     | 20        |
| Carpentry (hrs) | 2    | 2     | 1     | 8         |
| Profit (\$)     | 60   | 30    | 20    |           |

• To buy all of Fulkerson's resources, entrepreneur pays:

- Entrepreneur wants to minimize this cost
- Entrepreneur also needs to offer resource prices that will entice Fulkerson to sell
- One desk uses
  - 8 sq. ft. of lumber
  - 3 hours of finishing
  - 2 hours of carpentry
- One desk has profit of \$60
- $\Rightarrow$  Entrepreneur should pay at least \$60 for this combination of resources:

```
8y1 + 3y2 + 2y3 > 60
```

- One table uses
  - 6 sq. ft. of lumber
  - 2 hours of finishing
  - 2 hours of carpentry
- One table has profit of \$30
- $\Rightarrow$  Entrepreneur should pay at least \$30 for this combination of resources:



- One chair uses
  - 2 sq. ft. of lumber
  - 1 hours of finishing
  - 1 hours of carpentry
- One chair has profit of \$20
- $\Rightarrow$  Entrepreneur should pay at least \$20 for this combination of resources:

 $2y_{1} + y_{2} + y_{3} \ge 20$ 

- Increasing the availability of the resources potentially increases the maximum profits Fulkerson can achieve
- $\Rightarrow$  Entrepreneur should pay nonnegative amounts for each resource:

y, 30, y2 ≥0, y3 ≥0

• Putting this all together, we get:

| min  | $48y_1 + 20y_2 + 8y_3$      |                        |
|------|-----------------------------|------------------------|
| s.t. | $8y_1 + 3y_2 + 2y_3 \ge 60$ | $(x_1: \text{desks})$  |
|      | $6y_1 + 2y_2 + 2y_3 \ge 30$ | $(x_2: tables)$        |
|      | $2y_1 + y_2 + y_3 \ge 20$   | $(x_3: \text{chairs})$ |
|      | $y_1,  y_2,  y_3 \ge 0$     |                        |

y. = 0

 $y_2 = 0$ 

- This is the dual of Fulkerson's LP!
- In summary:
  - Optimal dual solution ⇔ "fair" prices for associated resources
  - Known as marginal prices or shadow prices
- Strong duality  $\Rightarrow$

$$\begin{pmatrix} Company's maximum revenue \\ from selling furniture \end{pmatrix} = \begin{pmatrix} Entrepreneur's minimum cost \\ of purchasing resources \end{pmatrix}$$

- Equilibrium under perfect competition: company makes no excess profits
- This kind of economic interpretation is trickier for LPs with different types of constraints and variable bounds

#### 4 Complementary slackness

- Optimal solution to Fulkerson's LP:  $x_1 = 4$ ,  $x_2 = 0$ ,  $x_3 = 0$
- Resources used:

lumber: 32 < 48 finishing: 12 < 20 carpentry: 8 = 8

- How much would you pay for an extra sq. ft. of lumber?
- How much would you pay for an extra hour of finishing?
- Resource not fully utilized in optimal solution
  - $\Rightarrow$  marginal price = 0
- Primal complementary slackness: either
  - a primal constraint is active at a primal optimal solution, or
  - $\circ$  the corresponding dual variable at optimality = 0

- Same logic applies to the dual
- Dual constraints  $\Leftrightarrow$  Primal decision variables
- Dual complementary slackness: either
  - a primal decision variable at optimality = 0, or
  - $\circ~$  the corresponding dual constraint is active in a dual optimal solution

## 5 More duality practice

**Example 2.** Consider the following LP:

|               |                            |                                                | minimize                      | $3x_1 - x_2 + 8x_3$         | 3                     |                            |                                                                                                                                                                                                              |                            |
|---------------|----------------------------|------------------------------------------------|-------------------------------|-----------------------------|-----------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
|               |                            |                                                | subject to                    | $-x_1 + 8x_3 \leq$          | 6 <b>B</b>            | 41                         |                                                                                                                                                                                                              |                            |
|               |                            |                                                |                               | $5x_1 - 3x_2 + 9x_2$        | $x_3 \ge -2$ <b>S</b> | 42                         |                                                                                                                                                                                                              |                            |
|               |                            |                                                |                               | $x_1 \ge 0, x_2 \le 0$      | $x_3 \ge 0$           |                            | $\max LP  \leftrightarrow  \min LP$                                                                                                                                                                          |                            |
| a. W          | rite the du                | ial.                                           |                               | S B                         | S                     | sensible<br>odd<br>bizarre | $ \begin{array}{ll} \leq \text{ constraint } \leftrightarrow & y_i \geq 0 \\ = \text{ constraint } \leftrightarrow & y_i \text{ free} \\ \geq \text{ constraint } \leftrightarrow & y_i \leq 0 \end{array} $ | sensible<br>odd<br>bizarre |
| b. Fi<br>c. G | nd a feasit<br>ive a lower | ble solution to the pri-<br>and an upper bound | imal and the<br>d on the opti | e dual.<br>imal value of th | e above LP.           | sensible<br>odd<br>bizarre | $\begin{array}{rcl} x_i \geq 0 & \leftrightarrow & \geq {\rm constraint} \\ x_i  {\rm free} & \leftrightarrow & = {\rm constraint} \\ x_i \leq 0 & \leftrightarrow & \leq {\rm constraint} \end{array}$      | sensible<br>odd<br>bizarre |
| <u>a</u> .    | ma×                        | 6y, - 2yz                                      |                               |                             | <u> </u>              | primal:                    | (0,0,0)                                                                                                                                                                                                      |                            |
|               | s.t.                       | - y, + Syz                                     | \$ 3                          | S Xi                        |                       |                            | value = 0                                                                                                                                                                                                    |                            |
|               |                            | - 3yz                                          | > -                           | B x <sub>2</sub>            | ٩                     | ual:                       | (0,0)                                                                                                                                                                                                        |                            |
|               |                            | 8y1 + 9y2                                      | ≤ 8                           | S x <sub>3</sub>            |                       |                            | value = 0                                                                                                                                                                                                    |                            |
|               |                            | y, ≤ 0, y2                                     | >0                            |                             |                       | dual (one                  | w) primal                                                                                                                                                                                                    |                            |
|               |                            | B                                              | S                             |                             | ٤.                    | )<br>0 <del>4</del> 0p     | f. value < 0                                                                                                                                                                                                 | )                          |
|               |                            |                                                |                               |                             | -                     | => aat                     | value = 0                                                                                                                                                                                                    |                            |
|               |                            |                                                |                               |                             |                       | · •                        |                                                                                                                                                                                                              |                            |
|               |                            |                                                |                               |                             |                       |                            |                                                                                                                                                                                                              |                            |
|               |                            |                                                |                               |                             |                       |                            |                                                                                                                                                                                                              |                            |
|               |                            |                                                |                               |                             |                       |                            |                                                                                                                                                                                                              |                            |
|               |                            |                                                |                               |                             |                       |                            |                                                                                                                                                                                                              |                            |
|               |                            |                                                |                               |                             |                       |                            |                                                                                                                                                                                                              |                            |
|               |                            |                                                |                               |                             |                       |                            |                                                                                                                                                                                                              |                            |